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Abstract
Representations of the quantum superalgebra Uq[osp(1/2)] and their relations
to the basic hypergeometric functions are investigated. We first establish
Clebsch–Gordan decomposition for the superalgebra Uq[osp(1/2)] in which
the representations having no classical counterparts are incorporated. Formulae
for these Clebsch–Gordan coefficients are derived, and is observed that
they may be expressed in terms of the Q-Hahn polynomials. We next
investigate representations of the quantum supergroup OSpq(1/2) which are
not well defined in the classical limit. Employing the universal T -matrix,
the representation matrices are obtained explicitly, and found to be related to
the little Q-Jacobi polynomials. Characteristically, the relation Q = −q is
satisfied in all cases. Using the Clebsch–Gordan coefficients derived here, we
construct new noncommutative spaces that are covariant under the coaction of
the even-dimensional representations of the quantum supergroup OSpq(1/2).

PACS numbers: 02.30.Gp, 02.20.Uw

1. Introduction

Soon after the introduction of the quantum groups, their relation to the basic hypergeometric
functions via the representation theory was revealed by many authors [1]. In particular, it was
observed [2–4] that the representation matrices of the quantum group SUq(2) can be expressed
in terms of the little q-Jacobi polynomials. Kirillov and Reshetikhin demonstrated [5] that the
Clebsch–Gordan coefficients of the quantum algebra Uq[sl(2)] relate to the q-Hahn and the
dual q-Hahn polynomials. These works furnished a new algebraic framework to the theory of
basic hypergeometric functions. Since then, extensive studies on interrelations between the
quantum group representations and the basic hypergeometric functions had taken place. We
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here mention some key examples of these developments. The matrix elements of the quantum
group SUq(1, 1) were found to be related [6] to the polynomials obtained from 2φ1. The
realizations of the quantum algebra Uq[su(1, 1)] and the generating functions of Al-Salam–
Chihara polynomials were found [7] to be linked. The kinship between the group theoretical
treatment of the q-oscillator algebra and the q-Laguerre as well as the q-Hermite polynomials
was observed [8]. The connection between the metaplectic representation of Uq[su(1, 1)] and
the q-Gegenbauer polynomials was noted [9].

On the other hand, the study of relations between the quantum supergroups and the basic
hypergeometric functions started very recently. In [10], the homogeneous superspaces for the
general linear supergroup and the spherical functions on them were investigated. Zou studied
[11] the spherical functions on the symmetric spaces arising from the quantum superalgebra
Uq[osp(1/2)]. This author also observed [12] the relationship between the transformation
groups of the quantum super 2-sphere and the little Q-Jacobi polynomials. Considering a
2 × 2 quantum supermatrix and identifying its dual algebra with the quantum superalgebra
Uq[osp(1/2)], the finite-dimensional representations of the quantum supergroup OSpq(1/2)

were found [12] to be related to the little Q-Jacobi polynomials with the assignment Q = −q.
Instead of Q, the parameter t = i

√
q was used in [12]. Adopting an alternate procedure

by explicitly evaluating the universal T -matrix that capped the Hopf dual structure, and
using the representations of the Uq[osp(1/2)] algebra, the present authors obtained [13] the
same result independently. The results in [13] are, however, partial in the sense that only
odd-dimensional representations of the algebra Uq[osp(1/2)] are taken into account. One
of the purposes of the present study is to incorporate the even-dimensional representations
of the supergroup OSpq(1/2) in the framework of [13]. Continuing our study of the finite-
dimensional representations of the universal T -matrix, we observe that the even-dimensional
representations of the quantum supergroup OSpq(1/2) may also be expressed via the little Q-
Jacobi polynomials with Q = −q. Furthermore, we also study irreducible decomposition of
the tensor product of both the even- and odd-dimensional representations of the Uq[osp(1/2)]
algebra. Evaluating the Clebsch–Gordan coupling of two even-dimensional representations
as well as that of an even- and odd-dimensional representations, we observe that the
decomposition is multiplicity free. Proceeding further, we note that the Clebsch–Gordan
coefficients for the decompositions are related to the Q-Hahn polynomials with Q = −q.

Emergence of the Q = −q polynomials, in contrast to the Q = q polynomials being
present for the aforementioned quantum groups, appears to be a generic property of the
quantum superalgebra Uq[osp(1/2)]. For odd-dimensional representations, this property may
be interpreted as a reflection of the isomorphism of Uq[osp(1/2n)] and U−q[so(2n+1)] which
holds on the representation space [14]. The even-dimensional representations for which the
said isomorphism is not known, however, are still characterized by polynomials with Q = −q.
Pointing towards a generalized feature of the quantum supergroups, the present work puts
forward new entries in the list of relations between supergroups and basic hypergeometric
functions.

Explicit evaluation of the Clebsch–Gordan coefficients allows us to explore new
noncommutative spaces covariant under the action of even-dimensional representations of
OSpq(1/2). Employing the method developed in [15], we, for instance, introduce the defining
relations of the covariant noncommutative space of dimension four. Our construction may
be generalized to describe similar covariant noncommutative spaces of higher dimensions.
Especially for the root of unity values of q the representation of these spaces may be of interest
in some physical problem.

Our focus on OSpq(1/2) is explained by physical and mathematical reasons. Physically,
fully developed representation theory of the said supergroup may provide better insight to the
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solvable vertex-type models [16] endowed with the quantum Uq[osp(1/2)] symmetry, Gaudin
models [17] and two-dimensional field theories [18]. Mathematical motivation lies in the fact
that osp(1/2) is the simplest superalgebra and a basic building block for other superalgebras.

We plan the paper as follows. In the following section, the definitions and representations
of Uq[osp(1/2)] to be used in the subsequent sections are listed. We prove that the even-
dimensional representations are of grade star type. The tensor product of two irreducible
representations is considered in section 3. We show that the tensor product is decomposed
into a direct sum of irreducible representations without multiplicity. Formulae of the Clebsch–
Gordan coefficients are derived and is shown that they are expressed in terms of the Q-Hahn
polynomials with Q = −q. In section 4, the even-dimensional representations of the quantum
supergroup OSpq(1/2) are constructed using the universal T -matrix. Relations of the matrix
elements and the little Q-Jacobi polynomials with Q = −q is established. We discuss covariant
noncommutative superspaces of dimensions two and four in section 5. Our concluding remarks
are given in section 6.

2. Uq[osp(1/2)] and its representations

The quantum superalgebra U ≡ Uq[osp(1/2)] has been introduced in [19]. The finite-
dimensional representations of U, which are q-analogue of the representations of the classical
superalgebra osp(1/2), have been investigated in [20, 16]. Classification of the finite-
dimensional integrable representations of more general quantum superalgebra Uq[osp(1/2n)]
has been made by Zou [21], and therein it has been observed that Uq[osp(1/2)] admits
representations which are not deformation of the ones for osp(1/2). Thus, we have two types
of finite-dimensional representations for U : one of them has classical counterparts, and the
other does not. For the purpose of fixing our notations and conventions, we here list the
relations that will be used subsequently.

The algebra U is generated by three elements H (parity even) and V± (parity odd) subject
to the relations

[H,V±] = ±1

2
V±, {V+, V−} = −q2H − q−2H

q − q−1
≡ −[2H ]q . (2.1)

The deformation parameter q is assumed to be generic throughout this article. The Hopf
algebra structures defined via the coproduct (�), the counit (ε) and the antipode (S) maps read
as follows:

�(H) = H ⊗ 1 + 1 ⊗ H, �(V±) = V± ⊗ q−H + qH ⊗ V±, (2.2)

ε(H) = ε(V±) = 0, (2.3)

S(H) = −H, S(V±) = −q∓1/2V±. (2.4)

The finite-dimensional irreducible representations of U are specified by the highest weight
� which takes any non-negative integral or half-integral value. We denote the irreducible
representation space of highest weight � by V (�). According to [21], a representation is
referred to be integrable if V (�) is a direct sum of its weight spaces, and if V± act as locally
nilpotent operators on V (�). The results in [21] for the case of U can be stated quite simply
by introducing an element K = q2H as follows: let v ∈ V (�) be a highest weight vector
(V+v = 0). The highest weight representation constructed on v is integrable if and only if

Kv =
{

±q� if � is an integer,

± iq� if � is a half-integer,
(2.5)
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and the integrable representations are completely reducible. The representation in V (�) has
dimension 2� + 1 so that V (�) is odd-(even-)dimensional if � is an integer (half-integer). It
is known that the classical superalgebra osp(1/2) does not have even-dimensional irreducible
representations.

We denote a basis set of V (�) as
{
e�
m(λ)

∣∣m = �, �−1, . . . ,−�
}
, where the index λ = 0, 1

specifies the parity of the highest weight vector e�
�(λ). The parity of the vector e�

m(λ) equals
� − m + λ, as it is obtained by the action of V �−m

− on e�
�(λ). For the superalgebras the norm

of the representation basis need not be chosen positive definite. In this work, however, we
assume the positive definiteness of the basis elements:(

e�
m(λ), e�′

m′(λ)
) = δ��′δmm′ . (2.6)

With these settings, the irreducible representation of U on V (�) is given as follows: for �

integer, we take the following form which is a variant of the convention used in [20, 16]:

He�
m(λ) = m

2
e�
m(λ),

V+e
�
m(λ) =

(
1

{2}q {� − m}q{� + m + 1}q
)1/2

e�
m+1(λ), (2.7)

V−e�
m(λ) = (−1)�−m−1

(
1

{2}q {� + m}q{� − m + 1}q
)1/2

e�
m−1(λ),

where

{m}q = q−m/2 − (−1)mqm/2

q−1/2 + q1/2
. (2.8)

The representation space V (�) is odd-dimensional. It is known that (2.7) is a grade star
representation [22] if q ∈ R [16]. The grade adjoint operation is given by

H ∗ = H, V ∗
± = ±(−1)εV∓, (2.9)

where ε = λ + 1 (mod 2). The grade adjoint operation is assumed to be an algebra anti-
isomorphism and a coalgebra isomorphism.

For a half-integer �, we chose a representation parallel to (2.7) but different from the one
in [21]:

He�
m(λ) = 1

2
(m ± η)e�

m(λ),

V+e
�
m(λ) = ±

(
1

{2}q {� − m}q{� + m + 1}q
)1/2

e�
m+1(λ), (2.10)

V−e�
m(λ) = (−1)�−mi

(
1

{2}q {� + m}q{� − m + 1}q
)1/2

e�
m−1(λ),

where

η = π i

2 ln q
.

The factor i appearing in the action of K (2.5) is converted into the constant η for the action
of H . We keep two different phase conventions for later convenience. Representation spaces
corresponding to each phase choice are denoted by V

(�)
± . The space V

(�)
± is even-dimensional.

We come to state our first result. If q ∈ R, then (2.10) is a grade star representation under the
grade adjoint operation

H ∗ = H ∓ π i

2 ln q
, V ∗

+ = ±i(−1)εV−, V ∗
− = ∓i(−1)εV+, (2.11)

where ε = λ + 1 (mod 2).
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Proof of this statement is rather straightforward. Recall the definition of grade star
representation. Let ρ be a representation of a quantum superalgebra U . Denoting a grade star
operation by ∗ that is defined in U, the representation ρ is referred to be of the grade star type
if ρ(X)∀X ∈ U satisfies

ρ(X∗) = ρ(X)∗, (2.12)

where ρ(X)∗ is the superhermitian conjugate defined by

ρ(X)∗ij = (−1)(î+X̂)(î+ĵ )ρ(X)ji,

where â denotes the parity of the object a. It is easily verified that (2.10) and (2.11) satisfy
(2.12).

3. Clebsch–Gordan decomposition and Q-Hahn polynomials

In this section, we consider the tensor product of two irreducible representations of U . As
noted earlier, the algebra U has two types of grade star representations, namely, odd- and even-
dimensional ones. The former maintains one-to-one correspondence to the representation
of osp(1/2) of same dimensionality, whereas the latter has no classical analogue. We may
consider three cases of the tensor product, namely, the product of two odd-dimensional
representations, two even ones, and an odd and an even ones. We observe that for all the three
cases the tensor product of two irreducible representations is, in general, reducible, and may
be decomposed into a direct sum of irreducible ones without multiplicity:

V (�1) ⊗ V (�2) = V (�1+�2) ⊕ V (�1+�2−1) ⊕ · · · ⊕ V (|�1−�2|). (3.1)

The decomposition of the tensored vector space in the irreducible basis is provided by the
Clebsch–Gordan coefficients (CGC):

e�
m(�1, �2,
) =

∑
m1 ,m2

m1+m2=m

C�1�2�
m1m2m

e�1
m1

(λ) ⊗ e�2
m2

(λ), (3.2)

where 
 = �1 + �2 − �(mod 2) signifies the parity of the highest weight vector e�
�(�1, �2,
).

The decomposition (3.1) is established below by explicit construction of the CGC. Another
pertinent problem of interest is the interrelation of the CGC and the basic hypergeometric
functions. We prove below that the CGC have polynomial structure corresponding to the
Q-Hahn polynomials. We treat three cases separately.

3.1. Two odd-dimensional representations

The Clebsch–Gordon decomposition for U in this case has been extensively studied in [23].
We here discuss a relation of the CGC and the Q-Hahn polynomials.

Following [24], the basic hypergeometric function r+1φr is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br

∣∣∣∣∣ Q; z

]
=

∞∑
k=0

(a1;Q)k(a2;Q)k · · · (ar+1;Q)k

(b1;Q)k(b2;Q)k · · · (br;Q)k

zk

(Q;Q)k
, (3.3)

where the shifted factorial reads

(x;Q)k =

⎧⎪⎪⎨⎪⎪⎩
1 for k = 0,

k−1∏
j=0

(1 − xQj) for k �= 0.
(3.4)
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The Q-Hahn polynomials are defined [24] via 3φ2 in a standard way:

QM(x; a, b,N;Q) = 3φ2

[
Q−M, abQM+1,Q−x

aQ,Q−N

∣∣∣∣∣Q;Q

]
, M � N. (3.5)

Setting a = Qα, b = Qβ, we obtain the following form of the Q-Hahn polynomials:

QM(x;α, β,N;Q) =
∑

k

(Q−M;Q)k(Q
α+β+M+1;Q)k(Q

−x;Q)k

(Qα+1;Q)k(Q−N ;Q)k

Qk

(Q;Q)k
. (3.6)

Explicit formulae of the CGC are found in [23, 15]. Up to a multiplicative factor that is
irrelevant to the present discussion, the CGC reads

C�1�2�
m1m2m

= N1(�1, �2, �,m; q)
∑

m1+m2=m

(−1)(�1−m1)λ+ 1
2 (�1−m1)(�1−m1+1)

× q− 1
2 m1(m+1)

( {�1 − m1}q!{�2 − m2}q!

{�1 + m1}q!{�2 + m2}q!

)1/2

×
∑

k

(−1)k(�1+�2−m)+ 1
2 k(k−1)q

1
2 k(�+m+1)

× {�1 + � − m2 − k}q!{�2 + m2 + k}q!

{�1 − � + m2 + k}q!{�2 − m2 − k}q!{� − m − k}q!{k}q!
, (3.7)

where the index k runs over all non-negative integers maintaining the argument of {x}q non-
negative. The part of summation over k can be regarded as a polynomial appearing in the
CGC. To relate this to the Q-Hahn polynomial with Q = −q, we recast the factorials in (3.7)
as shifted factorials:

{A}q!

{A + k}q!
= q

1
4 k(2A+k−1) (1 + q)k

(QA+1;Q)k
, (3.8)

{A}q!

{A − k}q!
= (−1)

1
2 k(2A+3−k)q

1
4 k(2A+3−k) (Q

−A;Q)k

(1 + q)k
, (3.9)

where Q = −q. Apart from a multiplicative constant, the summation over k in (3.7) is now
related to the polynomial form (3.6) with the assignment Q = −q:∑

k

(· · ·) = {�1 + � − m2}q!{�2 + m2}q!

{�1 − � + m2}q!{�2 − m2}q!{� − m}q!

×
∑

k

(Q−�2+m2;Q)k(Q
�2+m2+1;Q)k(Q

−�+m;Q)k

(Q�1−�+m2+1;Q)k(Q−�1−�+m2;Q)k

Qk

(Q;Q)k
. (3.10)

The parameters of the Q-Hahn polynomial read

α = −� + �1 + m2, β = � − �1 + m2,

N = � + �1 − m2, x = � − m, M = �2 − m2.
(3.11)

3.2. Two even-dimensional representations

It is expected that in this case the decomposed irreducible spaces have odd dimensions. We
consider representation in the tensored space V

(�1)
+ ⊗ V

(�2)− so that the constant η appearing in
the eigenvalues of H is eliminated. The CGC for this case may be computed in the standard
way as outlined below.
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We start by determining the highest weight states in the direct product space V
(�1)

+ ⊗V
(�2)− .

A highest weight state is a linear combination of the basis of V
(�1)

+ ⊗ V
(�2)− :

e�
�(�1, �2,
) =

∑
m1,m2

Cm1,m2e
�1
m1

(λ) ⊗ e�2
m2

(λ). (3.12)

The defining equations for the highest weight state read

�(H)e�
�(�1, �2,
) = �

2
e�
�(�1, �2,
), �(V+)e

�
�(�1, �2,
) = 0. (3.13)

The first equality in (3.13) puts a constraint on the summation in (3.12). Implying the identity

�(H)e�
�(�1, �2,
) =

∑
m1,m2

1

2
(m1 + m2)Cm1,m2e

�1
m1

(λ) ⊗ e�2
m2

(λ) = �

2
e�
�(�1, �2,
),

it necessitates that the summation must obey the constraint m1 + m2 = �. As both m1 and
m2 are half-integers, � takes the integral values. The second equality in (3.13) produces a
recurrence relation:

q− 1
2 m2

√{�1 − m1}q{�1 + m1 + 1}qCm1,m2

= (−1)�1−m1+λ+1q
1
2 (m1+1)

√{�2 + m2}q{�2 − m2 + 1}qCm1+1,m2−1. (3.14)

The recurrence relation may be solved explicitly:

Cm1,m2 = (−1)(�1−m1)λ+ 1
2 (�1−m1)(�1−m1−1)q

1
2 (�+1)(�1−m1)

×
( {�1 + �2 − �}q!{�1 + m1}q!{�2 + m2}q!

{2�1}q!{−�1 + �2 + �}q!{�1 − m1}q!{�2 − m2}q!

)1/2

C�1,�−�1 . (3.15)

The highest weight vector has been determined uniquely up to an overall factor C�,�−�1 that
may be obtained by using the normalization. As is unnecessary for our purpose, we leave the
constant undetermined.

Other states in V
(�1)

+ ⊗V
(�2)− are obtained by repeated application of �(V−) on the highest

weight state:

�(V−)�−me�
�(�1, �2,
) =

∑
m1+m2=�

Cm1,m2�(V−)�−me�1
m1

(λ) ⊗ e�2
m2

(λ). (3.16)

The state (3.16) may be easily recognized as an eigenstate of the operator �(H) with the
eigenvalue m/2. To express the state (3.16) as a linear combination of e�1

m1
(λ) ⊗ e�2

m2
(λ), we

expand �(V−)�−m by using the binomial theorem for anti-commuting objects. For q-anti-
commuting operators subject to qAB + BA = 0, the expansion reads

(A + B)n =
n∑

k=0

q
1
2 k(n−k) {n}q!

{k}q!{n − k}q!
AkBn−k. (3.17)

Setting A = qH ⊗ V−, B = V− ⊗ q−H , we apply the expansion (3.17) in (3.16). Following a
redefinition of the summation variables, we obtain the expression of CGC as

C�1�2�
m1m2m

= N2(�1, �2, �,m; q)
∑

m1+m2=m

(−1)(�1−m1)λ+ 1
2 (�1−m1)(�1−m1−1)

× q− 1
2 m1(m+1)

( {�1 − m1}q!{�2 − m2}q!

{�1 + m1}q!{�2 + m2}q!

)1/2

×
∑

k

(−1)k(�1+�2−m)+ 1
2 k(k+1)q

1
2 k(�+m+1)

× {�1 + � − m2 − k}q!{�2 + m2 + k}q!

{�1 − � + m2 + k}q!{�2 − m2 − k}q!{� − m − k}q!{k}q!
. (3.18)
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This CGC is almost same as (3.7) discussed in the previous subsection, except for a sign
factor that originates from the difference in the phases between the odd- and even-dimensional
representations, given in (2.7) and (2.10), respectively. Moreover, the sign difference in the
factors comprising the sum over the index k disappears when the expression (3.18) is recast in
terms of the shifted factorials. This leads to identical sums in (3.10) and (3.18) on the index
k. We may, therefore, immediately conclude that the CGC in (3.18) are related to the Q-Hahn
polynomials with Q = −q, and the values of the parameters are given by (3.11).

The above construction of the eigenstates of �(H) is just the standard procedure of
highest weight construction leading to a multiplet of 2� + 1 states from e�

�(�1, �2,
) by
repeated actions of �(V−). The 2� + 1 states are linearly independent, since they are the
eigenvectors of �(H) with different eigenvalues. Therefore, they form a basis of an invariant
subspace in V

(�1)
+ ⊗ V

(�2)− . It is an easy task to verify that eigenstates (3.16) belonging to
different values of � are linearly independent. It also follows that, as � � 0, its possible values
are �1 + �2, �1 + �2 − 1, . . . , |�1 − �2|. The total number of the eigenstates of �(H), of course,
coincides with the dimension of V

(�1)
+ ⊗ V

(�2)− :
�1+�2∑

�=|�1−�2|
(2� + 1) = (2�1 + 1)(2�2 + 1).

Therefore, all eigenstates of �(H) form a basis of V
(�1)

+ ⊗ V
(�2)− . In the present case, we have

thus proved the decomposition (3.1).

3.3. Odd- and even-dimensional representations

We consider representations in the space V (�1) ⊗ V
(�2)± , where the first (second) space in the

tensor product is odd-(even-)dimensional. The CGC for this case can be computed in the same
way as in the previous subsection. We here list some corresponding formulae and omit the
computational details. A highest weight state in V (�1) ⊗ V

(�2)± has the form of (3.12) where
the summation variables run under the constraint m1 + m2 = �. Since m1 (m2) is an integer
(half-integer), � takes a half-integral value and the constant η remains in the expression of the
weight:

�(H)e�
�(�1, �2,
) = 1

2 (� ± η)e�
�(�1, �2,
). (3.19)

The highest weight condition determines the coefficient Cm1,m2 :

Cm1,m2 = (−1)(�1−m1)λ+ 1
2 (�1−m1)(�1−m1−1)q

1
2 (�+1±η)(�1−m1)

×
(

1

{2�1}q!

{�1 + �2 − �}q!{�1 + m1}q!{�2 + m2}q!

{−�1 + �2 + �}q!{�1 − m1}q!{�2 − m2}q!

)1/2

C�1,�−�1 . (3.20)

The factor C�1,�−�1 may be determined by normalization of the highest weight states. Other
states in V (�1) ⊗ V

(�2)± are obtained by repeated applications of �(V−) on the highest weight
states. The CGC for this case may be read off from the expression of state vectors:

C�1�2�
m1m2m

= N3(�1, �2, �,m; q)
∑

m1+m2=m

(−1)(�1−m1)λ+ 1
2 (�1−m1)(�1−m1−1)

× q− 1
2 m1(m+1±η)

( {�1 − m1}q!{�2 − m2}q!

{�1 + m1}q!{�2 + m2}q!

)1/2

×
∑

k

(−1)k(�1+�2−m)+ 1
2 k(k−1)q

1
2 k(�+m+1)

× {�1 + � − m2 − k}q!{�2 + m2 + k}q!

{�1 − � + m2 + k}q!{�2 − m2 − k}q!{� − m − k}q!{k}q!
. (3.21)
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The factor that includes the sum over k in (3.21) may be converted into identical form as
(3.10). Thus, the polynomial part of the CGC in (3.21) leads to the Q-Hahn polynomial with
Q = −q and the parameters listed in (3.11). The same discussion as in the previous subsection
completes the proof of the decomposition (3.1).

4. Even-dimensional representations of OSpq(1/2) and little Q-Jacobi polynomials

In this section, we compute the even-dimensional representations of the quantum supergroup
A ≡ OSpq(1/2) by choosing a different basis set, and adopting a different method from [12].
We remark that precise theory of matrix representations of quantum group has been developed
in [25], and that the odd-dimensional representations of A have been obtained in [12, 13].
In [12], an algebra A(σ ) generated by 2 × 2 quantum supermatrix is set in the beginning,
and later its dual algebra is identified with U . The representations of the algebra A(σ ) are
obtained in a way parallel to [4]. In contrast to this approach, we start with the algebra U, and
then determine its dual basis. It follows the construction of the universal T -matrix, and the
representations of A are readily obtained by taking matrix elements of the universal T -matrix
in the representation space of the algebra U . In addition to the easy and clear mechanism of
our construction, the use of the universal T -matrix imparts the following advantages: (i) the
algebraic structure of A is made transparent in the construction of the universal T -matrix, as
its basis set is determined explicitly; (ii) the nontrivial contribution of parity odd elements of
A to representations can be easily read off from the form of the universal T -matrix, that is,
distinction from Lie supergroup OSp(1/2) is emphasized.

We divide this section in two parts. The first part contains a summary of the basis of the
algebra A, and we also quote the universal T -matrix from [13], where its detailed construction
employing the Hopf duality between the U and A algebras is given. The second part is devoted
to the computation of the even-dimensional representations of A and their relation to the little
Q-Jacobi polynomials.

4.1. OSpq(1/2) and universal T -matrix

The algebra A, introduced in [19, 20], is a Hopf algebra dual to the algebra U . Two
Hopf algebras U and A are in duality if there exists a doubly nondegenerate bilinear form
〈,〉 : A ⊗ U → C such that, for (a, b) ∈ A, (u, v) ∈ U ,

〈a, uv〉 = 〈�A(a), u ⊗ v〉, 〈ab, u〉 = 〈a ⊗ b,�U (u)〉,
〈a, 1U 〉 = εA(a), 〈1A, u〉 = εU (u), 〈a, SU (u)〉 = 〈SA(a), u〉. (4.1)

The algebra A is generated by three elements, which are dual to the generators of the algebra
U :

〈x, V+〉 = 1, 〈z,H 〉 = 1, 〈y, V−〉 = 1. (4.2)

Thus, x and y are of odd parity, while z is even. The generating elements satisfy the
commutation relations:

{x, y} = 0, [z, x] = 2 ln qx, [z, y] = 2 ln qy. (4.3)

Let the ordered monomials Ek�m = V k
+ H�V m

− , (k, �,m) ∈ (0, 1, 2, . . .) be the basis elements
of the algebra U . The basis elements ek�m of the dual Hopf algebra A follow the relation

〈ek�m,Ek′�′m′ 〉 = δk
k′δ

�
�′δ

m
m′ . (4.4)



14994 N Aizawa et al

The generating elements of the algebra Amay be identified as x = e100, y = e001 and z = e010.
The basis elements ek�m are ordered polynomials in the generating elements:

ek�m = xk

{k}q!

(z + (k − m) ln q)�

�!

ym

{m}q−1 !
. (4.5)

Using the duality structure, full Hopf structure of the algebra A has been obtained in [13].
We, however, do not list them here as it is not used in the subsequent discussions.

The notion of the universal T -matrix is a key feature capping the Hopf duality structure.
The universal T -matrix for the superalgebra is defined by

Te,E =
∑
k�m

(−1)ê
k�m(êk�m−1)/2ek�m ⊗ Ek�m, (4.6)

where the parity of basis elements is same for the two Hopf algebras U and A:

êk�m = Êk�m = k + m. (4.7)

Consequently, the duality relations (4.1) may be concisely expressed [26] in terms of the
T -matrix as

Te,ETe′,E = T�(e),E, Te,ETe,E′ = Te,�(E),

Tε(e),E = Te,ε(E) = 1, TS(e),E = Te,S(E),
(4.8)

where e and e′ (E and E′) refer to the two identical copies of algebra A (U).
Our explicit listing of the complete set of dual basis elements in (4.5) allows us to obtain

the universal T -matrix as an operator-valued function in a closed form:

Te,E =

⎛⎜⎝ ∞∑
k=0

(x ⊗ V+q
H )k⎧⎩k

⎫⎭
q
!

⎞⎟⎠ exp(z ⊗ H)

⎛⎜⎝ ∞∑
m=0

(y ⊗ q−H V−)m⎧⎩m

⎫⎭
q−1

!

⎞⎟⎠
≡ ×

×E xpq(x ⊗ V+q
H ) exp(z ⊗ H)E xpq−1(y ⊗ q−H V−)××, (4.9)

where we have introduced a deformed exponential that is characteristic of the quantum
OSpq(1/2) supergroup:

E xpq(X ) ≡
∞∑

n=0

X n⎧⎩n

⎫⎭
q
!
,

⎧⎩n

⎫⎭
q

= 1 − (−1)nqn

1 + q
. (4.10)

The operator ordering has been explicitly indicated in (4.9). In [27], using the Gauss
decomposition of the fundamental representation, a universal T -matrix for U is given in
terms of the standard q-exponential instead of the deformed exponential (4.10) characterizing
quantum supergroup. In the classical q → 1 limit, the universal T -matrix (4.9) yields [13]
the group element of the undeformed supergroup OSp(1/2). As the nilpotency relations
x2 = 0, y2 = 0 hold in the classical regime, we assume the following finite limits:

lim
q→1

x2

q − 1
= x, lim

q→1

y2

q−1 − 1
= y. (4.11)

It then follows that in this limit the universal T -matrix (4.9) reduces to an element of the
classical supergroup OSp(1/2):

G = (1 ⊗ 1 + x ⊗ V+) exp
(
x ⊗ V 2

+

)
exp(z ⊗ H) exp(y ⊗ V 2

−)(1 ⊗ 1 + y ⊗ V−). (4.12)

The well-known existence of the classical SL(2) subgroup structure generated by the elements(
V 2

±,H
)

of the undeformed osp(1/2) algebra is evident from (4.12). In fact, the correct limiting
structure (4.12) emphasizes that the quantum universal T -matrix embodies the duality between
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theU andA algebras in a way that runs parallel to the familiar dual kinship between the classical
Lie algebras and groups. Mappings from the universal T -matrix to the universal R-matrix of
U also exist [13].

4.2. Representation matrices

The closed form of the universal T -matrix in (4.9) can be used to compute the representation
matrices of the quantum supergroup A as has been done in [13]. To be explicit, we construct
the representations of A by evaluating the matrix elements of the universal T -matrix on V (�)

defined in section 2:

T �
m′m(λ) = (

e�
m′(λ), Te,Ee�

m(λ)
)

=
∑
abc

(−1)(a+c)(a+c−1)/2+(a+c)(�−m′+λ)eabc
(
e�
m′(λ), Eabce

�
m(λ)

)
. (4.13)

Assuming the completeness of the basis vectors e�
m(λ), we may verify the properties

�(T �
m′m(λ)) =

∑
k

T �
m′k(λ) ⊗ T �

km(λ), ε
(
T �

m′m(λ)
) = δm′m, (4.14)

which imply that the matrix elements (4.13) satisfy the axiom of comodule [1]. We may,
therefore, regard T �

m′m(λ) as the (2� + 1)-dimensional matrix representation of the algebra A.
We proceed to compute the matrix elements for the even-dimensional representations (2.10)
in the present section. The explicit listing of the basis elements of A in (4.5) renders the
computation of the matrix elements straightforward. The computation is carried out by using
two identities obtained by the repeated use of (2.10):

V a
+ e�

m(λ) = (±1)a

(
1

{2}aq
{� − m}q!

{� + m}q!

{� + m + a}q!

{� − m − a}q!

)1/2

e�
m+a(λ) (4.15)

and

V c
−e�

m(λ) = ic(−1)c(�−m)+c(c−1)/2

(
1

{2}cq
{� + m}q!

{� − m}q!

{� − m + c}q!

{� + m − c}q!

)1/2

e�
m−c(λ). (4.16)

We just quote the final result as

T �
m′m = (±1)m

′−m(−1)
1
2 (m′−m)(m′−m−1)+(m′−m)(�−m′+λ) e± π

4 (m′−m) i

× q
1
2 m(m′−m)

(
1

{2}m′−m
q

{� + m}q!{� + m′}q!

{� − m}q!{� − m′}q!

)1/2

×
∑

c

(± i)c(−1)c(�−m−1) q
− 1

2 c(m′−m)

{2}cq
{� − m + c}q!

{� + m − c}q!

× xm′−m+c

{m′ − m + c}q!
exp

(
m − c

2
z ± π i

4 ln q
z

)
yc

{c}q!
, (4.17)

where the index c runs over all non-negative integers maintaining the argument of {x}q non-
negative.

We now turn our attention to the polynomial structure built into the general matrix element
(4.17) in terms of the variable

ζ = −q−1/2

{2}q x e−z/2y. (4.18)
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We note that the variable (4.18) differs in sign from the corresponding one for the odd-
dimensional case. To demonstrate this, the product of generators in (4.17) for the case
m′ − m � 0 may be rearranged as follows:

xm′−m+c exp

(
m − c

2
z ± π i

4 ln q
z

)
yc = (∓ i)cq−mcxm′−m exp

(
m

2
z ± π i

4 ln q
z

)
xc e−cz/2yc.

The matrix element T �
m′m(λ) may now be succinctly expressed as a polynomial structure:

T �
m′m = (±1)m

′−m(−1)(m
′−m)(m′−m−1)/2+(m′−m)(�−m′+λ)

× e± π
4 (m′−m) i q

1
2 m(m′−m)

{m′ − m}q!

(
1

{2}m′−m
q

{� − m}q!{� + m′}q!

{� + m}q!{� − m′}q!

)1/2

× xm′−m exp

(
m

2
z ± π i

4 ln q
z

)
P �

m′m(ζ ). (4.19)

The polynomial P �
m′m(ζ ) in the variable ζ is defined by

P �
m′m(ζ ) =

∑
c

(−1)c(�−m)+ 1
2 c(c−1)q− 1

2 c(m′+m−1)

× {m′ − m}q!{l + m}q!{� − m + c}q!

{m′ − m + c}q!{� + m − c}q!{� − m}q!{c}q!
ζ c, (4.20)

where the index c runs over all non-negative integers maintaining the arguments of {x}q non-
negative. The polynomial (4.20) is identical to the one appearing in the odd-dimensional
case [13]. For the case m′ − m � 0, we make a replacement of the summation index c with
a = m′ − m + c. Rearrangement of the generators now provides the following expression of
the general matrix element:

T �
m′m = im−m′

(−1)
1
2 (m−m′)(m−m′+1)+(m−m′)λ

× e∓ π
4 (m−m′) i q

− 1
2 m′(m−m′)

{m − m′}q!

(
1

{2}m−m′
q

{� + m}q{� − m′}q
{� − m}q{� + m′}q

)1/2

× exp

(
m′

2
z ± π i

4 ln q
z

)
ym−m′

P �
m′m(ζ ), (4.21)

where the polynomial P �
m′m(ζ ) for m′ − m � 0 is defined by

P �
m′m(ζ ) =

∑
a

(−1)a(�−m′)+ 1
2 a(a−1)q− 1

2 a(m′+m−1)

× {m − m′}q!{l + m′}q!{� − m′ + a}q!

{m − m′ + a}q!{� + m′ − a}q!{� − m′}q!{a}q!
ζ a. (4.22)

The polynomial (4.22) is also identical to the corresponding one obtained in [13].
As seen above, the even-dimensional representations of the algebra A have the same

polynomial structure as the odd-dimensional ones, though, between these two cases, the
variable ζ differs by a sign. Thus, the polynomials (4.20) and (4.22) are identified to the little
Q-Jacobi polynomials with Q = −q. The little Q-Jacobi polynomials are defined via 2φ1

[24]:

p(α,β)
m (z) = 2φ1(Q

−m,Qα+β+m+1;Qα+1;Q;Qz)

=
∑

n

(Q−m;Q)n(Q
α+β+m+1;Q)n

(Qα+1;Q)n(Q;Q)n
(Qz)n. (4.23)
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Rewriting our polynomials (4.20) and (4.22) in terms of the shifted factorial with Q = −q,

their identification is readily obtained. For the choice m′ − m � 0, the polynomial structure
reads

P �
m′m(ζ ) =

∑
a

(Q−�−m;Q)a(Q
�−m+1;Q)a

(Qm′−m+1;Q)a(Q;Q)a
(Qζ)a = p

(m′−m,−m′−m)
�+m (ζ ), (4.24)

and for the m′ − m � 0 case its identification is given by

P �
m′m(ζ ) =

∑
a

(Q−�−m′ ;Q)a(Q
�−m′+1;Q)a

(Qm−m′+1;Q)a(Q;Q)a
(Qζ)a = p

(m−m′,−m′−m)
�+m′ (ζ ). (4.25)

The even- and odd-dimensional representations of the algebra A have almost the same
form. The fundamental difference of these is the factor exp(±ηz/2) appearing in the even-
dimensional representations. The factor is not well defined in the classical limit of q → 1.
This feature of the even-dimensional representations of the algebra A owes its genesis from
the corresponding one of its dual algebra U .

To connect the results in this section to that of [12], we consider the representation
specified by � = 1

2 , λ = 0. We denote the matrix elements as follows:

a = T
1
2

1
2

1
2

= exp
( z

4
± ηz

2

)
(1 + ζ ), b = T

1
2

1
2 − 1

2
= ± e∓ π

4 i

q
1
4 {2}

1
2
q

xd,

c = T
1
2

− 1
2

1
2

= i
e∓ π

4 i

q
1
4 {2}

1
2
q

dy, d = T
1
2

− 1
2 − 1

2
= exp

(
− z

4
± ηz

2

)
.

(4.26)

The commutation relations satisfied by the matrix elements may be immediately derived:

ab = ± iq
1
2 ba, ac = ± iq

1
2 ca, bc = −cb,

bd = ∓ iq
1
2 db, cd = ∓ iq

1
2 dc, [a, d] = −(1 + q)bc.

(4.27)

The central element ad + qbc commutes with a, d and anti-commutes with b, c. Thus,
the representations specified by � = 1

2 , λ = 0 are precisely same as the algebra A(σ ) used in
[12].

5. Even-dimensional covariant spaces of OSpq(1/2)

It has been observed [15, 29] that noncommutative spaces covariant under the action of a
finite-dimensional representation of quantum groups such as SLq(2) or OSpq(1/2) may be
obtained by using the CGC. The method developed in [15, 29] is outlined below. We introduce
an algebraic structure on a given representation space V (�). Namely, assuming a multiplication
map µ : V (�) ⊗ V (�) → V (�), we determine a consistent set of commutation relations among
bases of V (�) that may be regarded as the generators of noncommutative spaces. Specifically,
for the highest weight � representation of OSpq(1/2), we construct the following composite
object:

EL
M(
) =

∑
m1 ,m2

m1+m2=M

C� �L
m1m2M

e�
m1

(λ)e�
m2

(λ), (5.1)

where 
 = 2� − L (mod 2), where � is of integral or half-integral value. Then it may be
proved that the following relations are covariant under the right coaction of the highest weight
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� representation of OSpq(1/2):

E0
0(0) = r, (5.2)

E�
M(
) = ξe�

M(λ), (5.3)

EL
M(
) = 0, (L �= �, 0), (5.4)

where r and ξ are parameters. In the q → 1 limit ξ → 0, and ξ is regarded as a Grassmann
number if the parity of the two sets of vectors in (5.3) differ: 
 �= λ (mod 2).

Although we have obtained a set of covariant commutation properties, the simultaneous
use of all relations from (5.2) to (5.4) gives an inconsistent result, since some of them do not
have correct classical limits. In order to obtain a consistent covariant algebra, we have to make
a choice regarding the relations to be used for defining the algebra. Then their consistency has
to be verified. The consistency requirements are as follows:

(a) The constant r commutes with all generators.
(b) The associativity of products of generators need to be maintained.

Employing the above procedure in conjunction with the CGC given in (3.2), we now
construct covariant noncommutative spaces of dimensions two and four.

Case 1. � = 1
2 .

The allowed values of L are 0 and 1. We rewrite the basis of V (1/2) as follows:

e
1/2
1/2(λ) → x, e

1/2
−1/2(λ) → y.

We first consider the case of λ = 0, when x(y) is of even (odd) parity. Covariant relations for
L = 1 obtained from (5.4) read

x2 = y2 = 0, q1/4xy + q−1/4yx = 0. (5.5)

These relations are unacceptable as a definition of the covariant noncommutative space as
there the even element x becomes nilpotent. We rather regard L = 0 relation obtained from
(5.2) as a definition of the covariant space:

xy + q1/2yx = r. (5.6)

We now illustrate λ = 1 case where x(y) is of odd (even) parity. One can see that L = 1
relations are rejected again by the same reason. We thus obtain a covariant space from (5.2):

xy − q1/2yx = r. (5.7)

Setting r = 0 in (5.6) or (5.7), the quantum superspaces found in the literatures (e.g.
[30, 31]) are recovered. However, (5.6) or (5.7) gives the most general two-dimensional
covariant superspaces.

Case 2. � = 3
2 .

The index L ranges the integral values from 3 to 0. We rewrite the basis of V (3/2) as

e
3/2
3/2(λ) → x, e

3/2
1/2(λ) → y, e

3/2
−1/2(λ) → z, e

3/2
−3/2(λ) → w.

We study the case of λ = 0, since the example λ = 1 yields almost identical results except for
some sign differences. For the choice λ = 0, the generating elements x, z(y,w) are of even
(odd) parity. The results corresponding to L = 3 obtained from (5.4) contain an unacceptable
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relation: x2 = 0. We, therefore, discard these equations. The equations for the L = 1, 2 cases
obtained from (5.4) provide six commutation relations and two additional constraints:

xy + q3/2yx = 0, xz − q3zx = 0,

(q−2 − 1 + q)xw − {2}qwx + q−1/2(q2 − 1 + q−2)yz = 0,

(q2 − 1 + q−1)yz + q{2}qzy + q1/2{3}qxw = 0,

yw − q3wy = 0, zw + q3/2wz = 0

(5.8)

and

y2 = q−3/2
√{3}qxz, z2 = q−3/2

√{3}qyw. (5.9)

It turns out that these relations do not satisfy the consistency condition (b). For instance, two
ways of reversing xyz to zyx do not give identical result. We thus incorporate the relation
corresponding to L = 0. We regard this relation as an additional constraint after setting r = 0
in (5.2), and thereby make the four-dimensional covariant space well defined. The constraint
reads yz = −q−3/2{3}qxw. Employing this constraint we may simplify the commutation
properties (5.8) and (5.9). The requirement that the simplified relations obey the consistency
condition (b) is also verified. We, therefore, introduce the four-dimensional covariant space
defined by the six commutation relations

xy = −q3/2yx, xz = q3zx, xw = −q9/2wx,

yz = −q3/2zy, yw = q3wy, zw = −q3/2wz,
(5.10)

and three constraints

y2 = q−3/2
√{3}qxz, z2 = q−3/2

√{3}qyw, yz = −q−3/2{3}qxw. (5.11)

6. Concluding remarks

We have seen intimate relations between the representations of the algebras U,A and
basic hypergeometric functions. Existence of even-dimensional representations makes the
representation theory of the quantized osp(1/2) algebra richer and more interesting than the
one of the classical Lie superalgebra osp(1/2). Especially, the fundamental representation of
osp(1/2) is three-dimensional, while the corresponding representation of U can be further
decomposed into the product of two-dimensional ones. In other words, quasi-particles
described by the three-dimensional representation of U can be regarded as a composite of
more fundamental objects. Such situation, hopefully, may be realized in some physical
models. A byproduct of the even-dimensional representations of the ospq(1/2) algebra is that
new noncommutative spaces covariant under the coaction of the quantum group OSpq(1/2)

may be constructed via the Clebsch–Gordan decomposition. The representations of these
noncommutative spaces for the root of unity values of q, for instance, may be relevant for
some physical problems.

Turning to the representations of Lie superalgebras, little seems to be known about their
relations to hypergeometric functions. This may be explained by the appearance of the
Q = −q polynomials for the case of the algebras U and A. The classical limit of such
polynomials has somewhat complicated structure as they have to be evaluated at Q = −1.
It may be difficult to find such polynomials starting from the representations of classical
objects such as osp(1/2) and OSp(1/2). In this sense, the study of the representations of
the quantum superalgebras gives deeper understanding of the representation theory of the
Lie superalgebras. It is known that there is a one-to-one correspondence between the finite-
dimensional representations of osp(1/2n) and so(2n + 1) except for the spinorial ones. For
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quantum algebras, this is explained [14] by the isomorphism between Uq[osp(1/2n)] and
U−q[so(2n + 1)], which holds on the non-spinorial representation spaces. Our work confirms
that for the even-dimensional representations for which the said isomorphism is not known
are still characterized by the Q = −q polynomials. This may be a more general feature of the
quantum supergroups.
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